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Abstract. The possible formation of solitons in a Frenkel exciton system, with exciton–exciton
interaction only, is studied taking into account the Pauli character of exciton operators. This is
realized by choosing the trial function of the system in the form which is the particular representation
of the spin coherent state for spin 1/2. Possible solutions include both ‘bright’ and ‘dark’ solitons.
Strict conditions for the existence and stability of particular types of soliton are formulated by
imposing limitations on the values of the system parameters and soliton velocity. The energy–
momentum relation for both types of solution is obtained. It is concluded that neither kind of soliton
can exist if the effective dynamical interaction is a repulsive one. Recent references concerning
‘bright’ and ‘dark’ solitons are critically assessed.

1. Introduction

Solitons in one-dimensional excitonic systems have attracted considerable interest in the last
twenty-five years, especially in the context of the charge and energy transfer over large distances
in molecular chains, and self-induced transparency (SIT) [1–21]. The majority of the studies
concerning the transfer phenomena deal with the so-called Davydov model, where solitons
should arise on account of the single-‘exciton’ (vibron, electron, Frenkel exciton) trapping by
the induced local distortion of the host lattice. Investigations carried out within the general
theory of self-trapping (ST) phenomena [5–7] indicate that the original Davydov proposal,
i.e. soliton formation on account of the single-exciton ST, cannot explain intra-molecular energy
(amide-I quanta) transfer in biopolymers such as theα-helix and acetanilide (ACN). That is,
according to the available data [3–6], the widths of the exciton bands of these substances are too
small as compared to the maximal-phonon-frequency nonadibatic limit, so one should expect
the formation of small-polaron band states [5–7] rather than solitons. Nevertheless, recent
analysis [8] indicates a possibility for soliton formation even in such systems, but only for
higher excitation concentrations, where direct or indirect (phonon-mediated) exciton–exciton
interaction significantly changes the conditions for soliton existence [8]. These results concern
soliton formation in the system of the Bose quasi-particles: vibrational excitons (vibrons)
only. However, in the system of Frenkel excitons, their Pauli character results in an extra
(kinematical) exciton–exciton interaction [9–20] which additionally affects soliton properties.
Thus, for the correct theoretical description of the exciton–solitons in the molecular crystals,
proper accounting for the Pauli statistics of Frenkel excitons, and kinematical and dynamical
effects is necessary. Up to now there have been only a few attempts (to the best of our
knowledge) to treat these effects [10–17]. It was found that the two types of the exciton
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soliton, so-called ‘bright’ and ‘dark’ ones, may be formed solely on account of the dynamical
and kinematical interaction, even without exciton–phonon or exciton–photon coupling.

However, depending on the theoretical tool used in the particular study, different,
sometimes even contradictory, conditions for the existence of a particular type of soliton were
quoted. Thus, for example, Kruglov [10, 11] and Primatarowa and co-workers [12], using a
procedure consisting in the averaging of the equation of motion for Pauli operators over the
appropriate coherent state—Pauli-operator coherent states (POCS) [23,24]—have found that
the presence of the ‘bright’ or ‘dark’ soliton corresponds to the increase or decrease of the local
exciton density, respectively. According to them, if the magnitude of the exciton density is less
than 1/2, a ‘bright’ soliton arises, while if it lies between 1/2 and 1, a ‘dark’ soliton arises. In
contrast, in previous studies [13,17], the appearance of the particular solution is associated with
the nature of the dipole–dipole interaction, i.e. whether one deals with longitudinal (J > 0)
or transverse excitons (J < 0), and the exciton–exciton (i.e. is it repulsive or attractive)
interaction, and with the values of the energy parameters of the system, but was not related to
the magnitude of the exciton density.

The origin of these discrepancies lies primarily in the uncontrolled approximation involved
in the particular procedure. Thus, the inaccuracy in the studies [10, 13] could be the con-
sequence of the approach based upon the averaging of the equations of motion for the Pauli
operators over the POCS, which is not accurate enough due to the too-rough approximation
involved in the evaluation of the expectation values of the exciton operators in terms of the
exciton density [10, 12]. On the other hand, the approach based upon the bosonization of
the Pauli operators leads to uncontrolled errors in the accounting for the diagonal terms which
results in the appearance of an unphysical diagonal kinematical exciton–exciton interaction. As
pointed out in [12], this term together with the Glauber coherent stateansatzfor the trial state,
gives a large but unphysical contribution to the equation of motion for the soliton envelope,
which affects final results in uncontrolled way.

Note also that while in the case of SIT, due to its clear physical meaning which allows
straightforward interpretation, this procedure is justified, this is not the case for the solitons in
molecular crystals. That is, the expectation value of the exciton operator in the POCS represents
the polarization of the medium induced by the electromagnetic (EM) field. Consequently,
the solution of the equation of motion for this variable together with the solution of the
corresponding Maxwell equations for the EM field describes the coupled propagation of
the polarization and EM wave in the medium. In contrast, for molecular crystals, where
the soliton should serve as the carrier of energy, polarization has no obvious meaning and
therefore the proper treatment of the exciton–soliton demands its description in terms of more
appropriate variables. The natural choice would be that utilized recently in the study of a
related phenomenon: the soliton-like propagation of the condensed excitons in Cu2O [22],
where the multiexciton system was described in terms of the multiparticle wave function
having the meaning of the amplitude of the exciton density. Such solitons in the system of
N interacting excitons represent either the exciton bound state (the exciton drop or ‘bright’
soliton) or the defect (the exciton bubble, i.e. the region of the locally diluted excitons in the
otherwise uniformly distributed excitons (or ‘dark’ soliton)). Furthermore, although in most
of the studies on the solitons in the system of Frenkel excitons, the analysis was founded
upon a model Hamiltonian which conserves the total exciton number, there were no attempts
(with two exceptions [13, 17]) to find the connection between the soliton properties and the
exciton number.

Let us note that although the problem of the existence of the exciton–soliton is a long-
standing one and although nowadays there is increasing interest in the investigation of these
systems in the present context: discrete moving solitons and nonlinear self-localized modes
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[20, 21], for the reasons given above there is still a need for revisiting the problem in a way
which allows examination of exciton–soliton properties, especially for formulating criteria for
their existence, without the above-mentioned inconsistencies. For that purpose we are going
to formulate the problem in terms of the soliton density, so that it can be easily related to the
exciton number. Particular attention will be paid to the analysis of soliton properties as regards
their dependence on the values of physical parameters of the system and the character of the
interaction terms, all within the continuum approximation which allows one to establish the
soliton energy–momentum relation, which, in spite of a number of studies having been carried
out on the subject, has never previously been done. Moreover, since the applicability of the
continuum approximation is discussed in detail, we hope that the present analysis will help
in the understanding of the limit up to which a strictly continuous soliton can exist and when
one should go beyond the continuum approximation and look for excitations which cannot be
described within the continuum model.

2. The model and method

In what follows we shall consider a system consisting of a one-dimensional molecular chain of
periodR0 with one molecule per lattice site, constituted fromN molecules and populated by
N excitons. It can be described, within the Heitler–London approximation, by the following
Hamiltonian [9]:

H = 1
∑
n

P +
n Pn − J

∑
n

P +
n (Pn+1 + Pn−1) +U

∑
n

P +
n PnP

+
n+1Pn+1 (1)

whereP +
n (Pn) represents the Pauli operator describing the presence (absence) of an exciton

at thenth lattice site, while1, J andU represent the intra-molecular excitation energy, the
resonant dipole–dipole interaction responsible for the exciton transfer and the effective (either
direct or phonon-mediated) dynamical exciton–exciton interaction, respectively.

In order to find the moving stationary-soliton solution we use the time-independent
variational principle. For that purpose we adopt the semiclassical approximation, and following
references [10,13] we choose the normalized trial state of the system in a form which reflects
the Pauli character of the excitations, i.e. we choose the trial state of the system in the form of
a Pauli-operator coherent state (POCS):

|9〉 =
∏
n

(8n +9nP
+
n )|0〉 |8n|2 + |9n|2 = 1 Pn|0〉 = 0. (2)

This form was first used in the context of the self-induced transparency (SIT) by Agranovich
and Rupasov [21] and by Kruglov [10, 11] and Primatarowaet al [12] in the context of the
exciton–solitons in molecular crystals. Let us recall that the above choice of trial state is
equivalent to the one recently utilized by Konotop and Takeno [18, 19] in the analysis of the
related problem of the existence of nonlinear excitations in systems with exchange and dipole–
dipole interaction. That is, the POCS (2) represents the particular(s = 1/2) realization of the
spin coherent state:

|9〉 =
∏
n

|µn〉 where|µn〉 = exp(µnP +
n )√

1 + |µn|2
|0〉

which in [18,19] has been used as a trial state. According to [23,24],µn = tan(θn/2)eiφn , so9n
and8n can be related toµn through the explicit expressions8n ≡ cosθn and9n ≡ sinθneiφn

(0< φn < 2π and 0< θn < π).
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Due to the constraint that the total exciton numberN̂ = ∑
n P

+
n Pn is a constant of the

motion, the trial state should be normalized as follows:

〈9|
∑
n

P +
n Pn|9〉 =

∑
n

|9n|2 = N .

In what follows we shall describe the soliton in terms of9n, which according to the relation
〈9|P +

n Pn|9〉 = |9n|2 has the meaning of the amplitude of the exciton density. The
connection with the results of the papers [10–12], where the soliton solutions of the equation
of motion for the ‘polarization’ were considered, can be found easily due to the relations
pn = 〈9|Pn|9〉 ≡ 8∗n9n and|pn|2 = |9n|2(1− |9n|2).

We shall find an equation for the exciton amplitudes9n by minimizing the ground-state
energy of the system imposing the constraint that the operators of the total exciton number

N̂ =
∑
n

P +
n Pn

and momentum

P̂ex = h̄

2iR0

∑
n

P +
n (Pn+1− Pn−1)

are integrals of motion. (The expression for the momentum used here follows directly from
the evolution equation for the position operatorR =∑n R0nP

+
n Pn, i.e.P = mexcṘ.)

In other words, one should minimize the following functional:

H = 〈9|H − λN̂ − vP̂ex |9〉
whereλ andv represent Lagrange multipliers whose physical meaning will be explained later
on. The explicit expression for this functional reads

H = (1− λ)
∑
n

|9|2 − J
∑
n

8n9
∗
n(9n+18

∗
n+1 +9n−18

∗
n−1)

+ U
∑
n

|9n|2|9n+1|2 − vh̄

2iR0

∑
n

8n9
∗
n(8n+19

∗
n+1−8n−19

∗
n−1). (3)

In order to find the equation for9n, we demand stationarity of the above functional,
i.e. ∂H/∂9∗n = 0. Note that due to the above-established connection between9n and8n,
variations over these parameters are not independent, so∂H/∂8∗n = 0 is superfluous. Thus it
follows that before performing the minimization of the above functional over9n, one should
eliminate8n from the expression forH. In such a way, using the relation8n =

√
1− |9n|2,

and going over to the continuum approximation, we arrive at

H = (1− λ− 2J )
∫

dx

R0
|9(x)|2 + JR2

0

∫
dx

R0
|[9(x)

√
1− |9(x)|2]x |2

+
ih̄v

2

∫
dx

R0

[
9∗(x)

√
1− |9(x)|2 ∂

∂x
(9(x)

√
1− |9(x)|2)− c.c.

]
+ (2J +U)

∫
dx

R0
|9(x)|4. (4)

Note that due to the fact that8-terms are always coupled to the corresponding9-terms in the
above expressions, the sign and even the phase can always be ‘absorbed’ in the definition of
9; we have thus opted for the simplest choice, i.e. the positive sign with no further phase.

Clearly, all further results strictly concern the continuum case. The applicability or validity
of such an approximation will be discussed in the next section with respect to the particular
type of the solution. Here the dispersion in the nonlinear term has been neglected. This is
justified since|9(x)|2 < 1, so the term is proportional to the product of the exciton density and
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its derivative. Accordingly, we may expand
√

1− |9(x)|2 in powers of the small ‘parameter’
|9(x)|2. In addition, due to the smallness of that parameter, all the terms of higher order in
the exciton density and its derivatives (|9(x)|2|9x(x)|2 etc) may be neglected, and we obtain

H ≈ (1− λ− 2J )
∫

dx

R0
|9(x)|2 + JR2

0

∫
dx

R0
|9x(x)|2(1− |9(x)|2)

+ (2J +U)
∫

dx

R0
|9(x)|4 +

ih̄v

2

∫
dx

R0
(1− |9(x)|2)(9∗(x)9x(x)− c.c.).

(5)

This can be recast into a more convenient form by choosing9(x) = ψ(x)eikx where
ψ(x) in the general case is a complex function. Substituting this form for the exciton
amplitude into the last equation and minimizing the functional so obtained overk, we obtain
k = h̄v/(2JR2

0) ≡ mexv/h̄, while expression (5) now reads

H = 1̃
∫

dx

R0
|ψ(x)|2 + JR2

0

∫
dx

R0
|ψx(x)|2(1− |ψ(x)|2) +G(v)

∫
dx

R0
|ψ(x)|4 (6)

whereG(v) = U + 2J +mexv2/2 and1̃ = 1− 2J − λ−mexv2/2. This procedure is fully
equivalent to the usual one wherek is determined from the equation for the envelope function
ψ(x) by requiring the terms multiplied by the imaginary unit to vanish. Here, consistently
with the above-adopted approximation, the term containing the product of the exciton density
and its derivative should be neglected. In such a way, we arrive at the nonlinear Schrödinger
equation (NSE) whose solutions (and their properties) are well known [25,26]. The resulting
equation for the soliton amplitude reads

ψxx(x)− 1̃

JR2
0

ψ(x)− 2G(v)

JR2
0

ψ3(x) = 0. (7)

Here we restrict ourselves to the particular case whereψ(x) is taken to be real. Depending
on the sign of the parametersG(v) andJ , it may have two types of soliton solution: the
bell-shaped or ‘bright’ soliton ifJG(v) < 0 and the kink-like or ‘dark’ soliton in the opposite
case.

3. Analysis of the solutions

3.1. The ‘bright’ soliton

The first integral of this equation, conforming to the ‘bell’-shaped boundary conditions
(ψ(±∞) = 0, ψx(±∞) = 0 andψ(x0) = ψ0 6= 0 wherex0 represents the centre of mass of
the soliton), is given as follows:

ψ2
x (x) = V (ψ(x)) ≡

G(v)

JR2
0

ψ2(x)

(
1̃

G(v)
+ψ2(x)

)
. (8)

ψ0 denotes the soliton amplitude (the magnitude of the exciton density) and corresponds to the
zeros of the ‘potential’V (ψ), i.e.V (ψ0) = 0. Consequently it is given asψ2

0 = −1̃/G(v),
and the last equation attains the form

ψ2
x (x) = −

G(v)

JR2
0

ψ2(x)(ψ2
0 − ψ2(x)). (9)

Integrating this equation, we find the normalized bell-shaped soliton solution:

ψ(x) = N
√
µ

2
sech

(x − x0)

l
(10)
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wherel = R0/(µN ) denotes the soliton width whileµ = −G(v)/(2J ). From the normal-
ization condition we find

ψ0 = N
√
−G(v)

4J
.

Combining this expression forψ0 with the one given in terms ofG(v)and1̃, we may determine
the Lagrange multiplierλ:

λ = 1− 2J − mexv
2

2
− G

2(v)N 2

4J
. (11)

As is known [26], the stable solution, i.e. the one minimizing functional (8), corresponds to the
caseJ > 0 andG(v) < 0 (G(v) ≡ −|G(v)|). Thus the stability condition for this solution is

U + 2J +
mexv

2

2
< 0. (12)

According to this condition, soliton existence, in the system of Frenkel excitons, demands
an attractive and large enough (U = −|U | < 0 and|U | > 2J + mexv2/2) exciton–exciton
interaction.

Substituting the above-obtained soliton solution into the expressions for the soliton energy
(Esol = 〈9|H |9〉) and momentum (Psol = 〈9|P̂ex |9〉), we have

Esol = (1− 2J )N +
mexv

2

2
N − N

3

12J

[
G2(v) + 2|G(v)|mexv2

]
(13)

and

Psol = mexvN
(

1− |G(v)|
6J

N 2

)
. (14)

Let us now examine the relation betweenEsol andPsol . According to the explicit exp-
ression forG(v), one can solve (14) as a cubic equation in terms ofv. It turns out that there
exists a single real solutionv = v(Psol), but under the conditionN 2 < 6J/(|U | − 2J ). After
straightforward but tedious algebraic manipulations, we obtain

Esol(Psol) = (1− 2J )N +
E2

4JN

[
sinh2(2P̃ )− 2 sinh2(P̃ )

]
− (U − 2J )2

12J
N 3 (15)

where

E = 2

3
[2J (N 2 + 3)−N 2|U |] P̃ = 1

3
arcsinh

(
6J√
mexE3

Psol

)
.

From the above relations it is easy to prove thatv represents the soliton velocity since
the following relation holds:∂Esol/∂Psol = v, wherev denotes the unique solution of the
above-mentioned cubic equation, i.e.v = v(Psol). Note also that the same conclusion follows
straightforwardly from equations (13) and (14):

∂Esol

∂Psol
= ∂Esol/∂v

∂Psol/∂v
≡ v.

Finally one may find the soliton effective mass from the definitionmsol = (∂Psol/∂v)v→0, so
we have

msol = mexN
[
1− (|U | − 2J )

6J
N 2

]
. (16)

Clearly, due to the above-mentioned conditionN 2 < 6J/(|U | − 2J ), the soliton mass
should be positive.
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Relation (12) implies that, under the most favourable condition (v = 0), soliton existence
demands|U | > 2J , so the formation of ‘bright’ multiexciton–solitons in the pure excitonic
system is not very probable. That is, dynamical exciton–exciton interaction is usually attractive
and has a quadrupolar character, and consequently is much weaker than the dipole–dipole
transfer term (|U | � J ) [9], so the condition for the soliton formation is not satisfied.
Therefore, soliton formation demands an additional interaction which may compensate for
the kinematical term. A common mechanism causing the corresponding effects is the exciton–
phonon interaction [20], which, irrespectively of the mechanism of soliton formation [8],
causes the renormalization of the exciton–exciton interaction; henceU should be replaced by
Ueff = U − ε, whereε ∼ EB measures an additional, phonon-mediated, exciton–exciton
interaction. (EB denotes the so-called small-polaron binding energy.)

Besides the above-formulated condition for soliton existence and stability, the validity
of the continuum approximation (l � R0) and the restriction to the low-exciton-density
(|9(x)|2 < 1) limit impose two more conditions:

N
|U | − 2J −mexv2/2

2J
� 1

N 2

2

|U | − 2J −mexv2/2

2J
< 1. (17)

From the second one we obtainl � NR0/2 which, however, does not mean that, for the given
set of system parameters, the soliton width increases with the rise ofN . It simply means that the
simultaneous satisfaction of both conditions in (17) indicates, due to the 1/N dependence of the
soliton width, that soliton formation in systems populated with higher numbers of excitonsN
is possible in systems with lower dynamical interaction|U |. In this respect, our understanding
of the nature of the dependence of the soliton parameters onN substantially differs from that
of Kislukha [17] who saw these conditions (i.e. (17)) as indicating the soliton spreading with
the rise of the exciton population. On the contrary, increase ofN causes shrinking of the
soliton. Soliton motion has a twofold role in its properties. That is, while on one hand it
violates soliton stability and, according to (14), above some critical velocity

vc =
√

2

mex
(|U | − 2J )

the soliton becomes unstable, on the other hand, due to the decrease of the parameterG(v), it
ensures better applicability of the continuum approximation, i.e. increase of the soliton speed
causes spreading of the soliton width.

3.2. The ‘dark’ soliton

Equation (9) has a kink-soliton solution [27] which may be found by imposing the following
boundary conditions:ψ(x0) = 0, ψ(±∞) = ±ψ̃0 andψx(±∞) = ψxx = 0. Hereψ̃0

represents the ‘vacuum’ solution corresponding to the minima of the ‘potential’V (ψ(x)).
Consequently it is explicitly given as̃ψ2

0 = −1̃/(2G(v)). Integrating (9) with the above
boundary conditions, we obtain

ψ(x) = ψ̃0 tanh
(x − x0)

l
(18)

with l representing the soliton width:

l =
√

JR2
0

ψ̃2
0G(v)

.

The above solution is known as a ‘dark’ soliton, since its squared modulus

ψ2(x) = ψ̃2
0

[
1− sech2

(x − x0)

l

]
(19)
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describes the region with the locally diluted exciton density—the ‘hole’ against the background
of the uniformly distributed particles with the densityψ2

0 .
In this case, due to the divergence of the integral∫ ∞

−∞

dx

R0
|9(x)|2 =

∫ ∞
−∞

dx

R0
ψ2(x)

the soliton amplitude (̃ψ0) cannot be found as simply as in the case of the bright soliton.
Furthermore, analogous divergences also appear in the calculation of the integrals of the soliton
momentum and energy. In order to avoid these difficulties, we shall follow a standard procedure
introduced in the theory of dark solitons [28] and which simply consists in the subtracting of the
corresponding ‘vacuum’ contributions from these integrals. Thus the normalization condition
now reads

Ñ =
∫ ∞
−∞

dx

R0
(ψ2(x)− ψ̃2

0). (20)

This, obviously negative, quantity should be understood as a ‘defect’ in the uniform state,
i.e. the number of particles which are missing from the ‘hole’. After some calculation we
obtain

Ñ = −2ψ̃0

√
J

G(v)

from which one may find the soliton amplitude, Lagrange multiplierλ and soliton width as
follows:

ψ̃0 = − Ñ
2

√
G(v)

J
λ = 1− 2J − mexv

2

2
+
G2(v)Ñ 2

2J
l = 2J

G(v)

R0

|Ñ | . (21)

Using appropriate—analogous to the above—renormalization of the soliton momentum
and energy, we find

Psol = mexvÑ
(

1− G(v)
3J
Ñ 2

)
(22)

and

Esol = (1− 2J )Ñ +
mexv

2

2
Ñ +

Ñ 3

6J

[
G2(v)− 2G(v)mexv

2
]
. (23)

Like in the case of the bright soliton, one can easily expressv, by solving equation (23) as a
cubic equation forv, asv = v(Psol), which enables the establishing of the following explicit
energy–momentum relation:

Esol(Psol) = (1− 2J )Ñ − E
2

J Ñ
cos2

(
π

3
+ P̃

)
cos

(
2π

3
+ 2P̃

)
+
(U + 2J )2

6J
Ñ 3 (24)

where

E = 2

3
[J (3− 2Ñ 2)− Ñ 2U ] P̃ = 1

3
arccos

(
3J√
mex |E |3

Psol

)
.

Here again,v has the meaning of the soliton velocity (v = ∂Esol/∂Psol), while the soliton
effective mass becomes

msol = mexÑ
[
1− (U + 2J )

3J
Ñ 2

]
. (25)

Obviously, due to the ‘negativity’ ofÑ , the soliton mass (as well as its momentum and
energy) is also negative. From the formal point of view this is the consequence of our choice of
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the normalization condition as defined by (20). These ‘negativities’ cannot be simply avoided.
Thus if one tried to get rid of these difficulties by, for example, choosing the normalization
condition as follows:

Ñ =
∫ ∞
−∞

dx

R0
(ψ̃0

2 − ψ2(x))

the energy–momentum relation would no longer hold (i.e.v 6= ∂Esol/∂Psol). Furthermore,
the alternative normalization condition

Ñ =
∫ L

−L

dx

R0
ψ2(x)

(where 2L represents the length of the system) also leads to the violation of theEsol–Psol
relation as pointed out in references [27,29]. We consider this relation to be the essential one,
and this dictated our choice of the normalization condition.

From the physical point of view, the ‘negativity’ of these parameters should not be sur-
prising in view of the above-mentioned interpretation of a dark soliton: the hole in the otherwise
homogeneous particle-density–exciton ‘condensate’.

The above solution minimizes the functional ifJ > 0 andG(v) > 0, so the stability
condition now reads

U + 2J +
mexv

2

2
> 0. (26)

On the other hand, the applicability of the continuum approximationl � R0 and the restriction
to the low-exciton-density limit impose

˜|N |U + 2J +mexv2/2

2J
� 1

Ñ 2

2

U + 2J +mexv2/2

2J
< 1. (27)

The motion of the ‘dark’ solitons has quite the opposite tendency to that of the ‘bright’
solitons: increase of the soliton velocity supports its stability followed, immediately, by its
shrinking.

From the above results it follows that, like in the case for ‘bright’ solitons, existence of
‘dark’ ones demands an attractive exciton–exciton interaction (U < 0). That is, although the
stability condition is satisfied even for the repulsive inter-exciton interaction, the continuum
approximation may be satisfied only through the compensation of the effective kinematic term
(2J +mexv2/2) by the—high enough—attractive dynamical exciton–exciton interaction. Due
to the smallness of the direct dynamical term (|U | � J ), the exciton–phonon interaction
should be the mechanism which, in the system of interacting Frenkel excitons, will ensure
soliton formation.

4. Discussion

Here we wish to analyse in detail the basic ingredients of our approach: a time-independent
variational method based upon the semiclassical and continuum approximations. We note that
our results, obtained within the time-independent variational method, are no less general than
the previous ones obtained by the time-dependent variational procedure [10–12, 15–17]. That
is, the choice of the time-dependent soliton solution in the form where the soliton envelope
depends on time only through the coordinate in the moving frame:f (x − vt)ei(kx−ωt), is
practically equivalent to the time-independent variational procedure with explicit accounting
for the momentum and particle number (norm) conservation [26]. Explicit time dependence is
important only for the analysis of the soliton stability, i.e. linear stability with respect to small
perturbations (9 → 9sol + δ9; δ9 � 9sol), or for the examination of the soliton dynamics



880 Z Ivić et al

under the influence of external perturbations. Since our analysis relies upon equation (9), which
is the stationary limit of the NSE, for the linear stability of the above-obtained solutions we
may adopt the criteria formulated for the ‘bright’ and ‘dark’ solitons of the NSE. Accordingly,
we may state that our ‘bright’-soliton solution is stable with respect to small perturbations [26],
while for the ‘dark’ soliton, the soliton stability condition demands∂Psol/∂v < 0 [28] which
leads to

Ñ 2
U + 2J + 5mexv2/2

3J
< 1. (28)

Here, we use the term ‘stability’ to denote so-called ‘longitudinal stability’ (i.e. the small
perturbation is a function of the coordinate in the direction of the soliton motion,δ9 = δ9(x)).
With respect to so-called transverse perturbations, both ‘bright’ and ‘dark’ solitons are unstable
[25,26].

As regards the validity of the semiclassical approximation, introduced through the trial
stateansatz, we note that our trial function chosen as a POCS is not the eigenstate of the
Hamiltonian, exciton momentum and particle number operator, and therefore in the soliton
solutions we find that there appear fluctuations of these quantities. The magnitudes of these
fluctuations determine the applicability of the semiclassical approximation involved in the
present treatment. To estimate the validity of the semiclassical approach, we shall calculate
the mean square variance of these operators. For the mean square variance of the exciton
number

(δN )2 = 〈9|(N̂ −N )2|9〉 ≡ 〈N̂ 2〉 −N 2

we have

(δN )2 = 〈9|
∑
m

P +
mPm −

∑
n6=m

P +
n P

+
mPnPm −N 2|9〉 ≡ N −

∑
n

|ψn|4. (29)

Similarly, for the momentum and energy fluctuation we obtain

(δP̂ex)
2 = h̄2

4R2
0

{∑
m

〈9|2P +
mPm − (P +

m+1Pm−1 + h.c.)

+ 2P +
mPm(P

+
m+1Pm−1 + P +

m−1Pm+1− P +
m−1P

+
m−1)|9〉

}
. (30)

(δH)2 = J 2

{∑
m

〈9|2P +
mPm + (P +

m+1Pm−1 + h.c.)

+ 2P +
mPm(P

+
m+1Pm−1 + P +

m−1Pm+1 + P +
m+1Pm+1P

+
m−1P

+
m−1)|9〉

}
+ UJ

∑
m

〈9|P +
m−1P

+
m+1PmPm+1 + P +

m−1P
+
m+1PmPm−1 + h.c.|9〉

+ U2
∑
m

〈9|P +
m−1Pm−1P

+
mPmP

+
m+1Pm+1|9〉. (31)

Using the definition of the POCS and after going to the continuum limit, the mean square
variance of the momentum fluctuation becomes

(δP̂ex)
2 ≈ h̄2

2R2
0

∫
dx

R0
(1− 2|ψ |2){2R2

0[(1− |ψ |2)|ψx |2 − (1/2)((|ψ |2)x)2 − |ψ |4]}. (32)
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Analogously, after some extensive calculation, we obtain the following approximate expression
for the energy fluctuations:

(δH)2 ≈ 2J 2
∫

dx

R0
(1− 2|ψ |2)

{
2|ψ |2 − |ψ |4 − 2R2

0

[
(1− |ψ |2)|ψx |2 − R

2
0

2
((|ψ |2)x)2

]}
+ UJ

{∫
dx

R0
[4|ψ |4(1− |ψ |2)− 3R2

0((|ψ |2)x)2 − 2R2
0(1− |ψ |2|)ψ |2|ψx |2

+ 4R2
0|ψ |2((|ψ |2)x)2]

}
+U2

∫
dx

R0
|ψ |6. (33)

These relations are valid equally for ‘bright’ and ‘dark’ solitons. Substituting the explicit
expression for the particular solutions and keeping the most dominant terms only, we found
that the momentum and energy mean square variances are both proportional to(δN )2,
i.e. δP̂ex/P̂ex ∼ δN /N and δH/E ∼ δN /N . Obviously the relative mean variance of
the exciton numberδN /N measures the magnitude of the quantum fluctuations and in such a
way practically determines the degree of the validity of the semiclassical approximation. The
mean square variance of the particle number is explicitly given by

(δN )2 =

N
(

1− µN
2

3

)
‘bright’ soliton

N (1−O(N−1)) ‘dark’ soliton.

(34)

Thus the relative variance of the exciton number approachesδN /N . 1/N 1/2, which provides
the applicability of the semiclassical approximation in the limit of high exciton concentrations.
Note, however, that(δN )2 > 0, so by virtue of equation (29) which may be written as

(δN )2 > 0=
∑
m

|ψm|2(1− |ψm|2)

the number of excitons participating in the soliton formation is limited. This condition is,
however, practically identical to the previously underlined demand for the smallness of the
magnitude of the exciton density which, as discussed in sections 2 and 3, practically means
thatψ2

0 < 1, and therefore the previously emphasized conditions for the soliton existence (12),
(17), (26) and (27) practically provide also the applicability of the semiclassical concept.

In order to estimate the accuracy of the continuum limit, let us examine the influence of
the terms neglected in equation (9). For that purpose we collect all the terms of the next order
in the product of the exciton density and its derivative. Adding these corrections to functional
(8) we obtain

H = JR2
0

∫
dx

R0
|ψx(x)|2 +G(v)

∫
dx

R0
|ψ(x)|4 − (5J + 2U)

∫
dx

R0
|ψ(x)|2|ψx(x)|2 (35)

where the term proportional tõ1, irrelevant for the further analysis, has been omitted. The
equation for the soliton envelope which follows from this functional is

JR2
0ψxx − (5J + 2U)R2

0

[
(ψx(x)|ψ(x)|2)x − |ψx |2ψ

]− 2G(v)|ψ(x)|2ψ = 0. (36)

Here, we do not need to look for the explicit solution forψ(x), and for the estimation
of this term in the soliton properties we can use a simple qualitative approach based upon the
virial theorem [26]. Thus we perform the scale changex → µx. For the ‘bright’-soliton
solutions, according to norm conservation,ψ(x)must scale as follows:ψ(x)→ µ1/2ψ(µx),
and the above functional becomes

H(µ) = µ2Ek +µEp − µ3E′p (37)
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where

Ek = JR2
0

∫
dx

R0
|ψx(x)|2 Ep = G(v)

∫
dx

R0
|ψ(x)|4

denote the ‘kinetic’ and ‘potential’ energy, respectively, while

E′p = (5J + 2U)
∫

dx

R0
|ψx(x)|2|ψ(x)|2

represents the correction arising on account of previously disregarded terms. Stability of
the soliton solution demands(∂H(µ)/∂µ)µ=1 = 0; (∂2H(µ)/∂µ2)µ=1 > 0 which lead to:
2Ek + Ep − 3E′p = 0 and 2Ek − 6E′p > 0, leading to an improved stability condition:
Ek + Ep < 0. With respect to the previously obtained one, where stable solutions exist for
J > 0 only, this relation opens up the possibility for

(i) stabilization of the solutions corresponding toJ < 0 andG > 0, and
(ii) existence of new solutions even in the case where bothJ andG(v) are negative.

Let us now examine these possibilities in detail. First, we shall analyse how these changes affect
the solution examined in section 3.1 assuming that the conditions found there, equations (17)
and (26), are satisfied. For that purpose we first estimate the changes of the soliton width due
to this correction using the direct variational method and treating the soliton solution (10) as
a trial state withl being the variational parameter. In such a way we find that the modified
soliton width, measured in units of the lattice constant (l̃ = l/R0), is given as

l̃ = l̃0 3|G(v)|(5J − 2|U |)N 2
/{

10J 2

[
1−

√
1− 6N 2(5J − 2|U |)

5J l̃0

]}
. (38)

Assuming that the above-quoted conditions are satisfied, in particular that for applicability of
the continuum limit̃l � 1, one can see that the soliton relative width satisfies

l̃ ≈ l̃0
/(

1 +
3N 2(5J − 2|U |)

10J 2

)
. (39)

It follows that, in the system of the so-called longitudinal excitons (J > 0) and if the conditions
(18) are satisfied, these corrections do not induce any special modification of the soliton
solutions. That is, sinceEk ∼ J andEp ∼ G(v), one can see that the modified stability
condition demands attractive exciton–exciton interaction, so it is practically equivalent to the
stability condition (12). The only change is the decrease of the soliton width. Stabilization of
the bright solitons in the system of transverse excitons (J < 0) andJG(v) > 0 is not a realistic
possibility. That is,G(v) > 0 requiresU − 2|J | −mexv2/2> 0 which, due to the smallness
of the exciton–exciton interaction with respect to the dipole–dipole one, cannot be realized in
actual systems even if one takes into account exciton–phonon interaction. That is, effective
exciton–exciton interaction arising due to the coupling with the lattice is always attractive,
and cannot change the sign ofG(v). On the other hand, ifG(v) < 0, the modified stability
condition is always satisfied while the direct variation leads to the following expression for the
relative inverse soliton width:

µ = 5|J |
3(5|J | − U)N 2

[
1 +

√
1 +

3|G(v)|(5|J | − 2U)N 2

5J 2

]
. (40)

Demanding the applicability of the continuum approximationµ � 1, from this equation we
found the following condition:

N 2� 2 +G(v)/J

3(1− U/J ) . (41)
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On the other hand, smallness of the exciton density demandsψ2
0 < 1, which together with the

expression forµ imposes the following limitation on the exciton number:

N 2 <
2J

G(v)

(
1 +

3U

5J

)
. (42)

These conditions cannot be satisfied simultaneously, so these ‘bright’-soliton solutions cannot
be formed.

A similar procedure may be applied also to the ‘dark’ solitons but with the proper scaling
rule for the ‘dark’-soliton solution:ψ(x)→ ψ(µx). In this case, the functionalH scales as
follows:

H(µ) = µ(Ek − E′p) +µ−1Ep. (43)

From the stationarity ofH we have(Ek − E′p)− Ep = 0, while the stability condition gives
2Ep > 0 which, combined with the above condition, results inEk − E′p > 0. This however,
cannot substantially violate the stability of the previously analysed ‘dark’ solitons. That is,
the above condition may be specified asJ − (5J + 2U)ψ2

0 > 0, which, due to the smallness
of the soliton amplitude, provides stability of the ‘dark’ solitons even in the presence of these
corrections. The only influence of these additional terms is reflected through the change (in fact
shrinking) of the soliton width. This can be seen from the fact that the variational parameter
µ, which may be identified with the soliton inverse relative width, is in this case given by

µ =
√

Ep

Ek − E′p
which is bigger than in the unperturbed case:E′p = 0.

5. Concluding remarks

Concluding this paper, let us note that by formulating the theory in terms of the amplitude of
the exciton density we are offering, for the present system, a more justified physical picture,
with quite obvious meaning, than when describing the system in terms of ‘polarization’. Thus
our ‘bright’-soliton solution corresponds to theN -exciton bound state while the ‘dark’ soliton
describes the defect in the homogeneous exciton distribution. In contrast to the results of
references [10–12], here we have shown that the whether ‘bright’ or ‘dark’ solitons will form
in the Frenkel exciton system depends on the sign and the magnitude of the energy parameters
of the system but not on the magnitude of the exciton density. In particular, we found that
neither ‘bright’ nor ‘dark’ solitons can exist if the effective dynamical interaction is a repulsive
one. Thus soliton existence in the system considered demandsUeff < 0.

Furthermore, explicit accounting for the conservation of the exciton number through the
normalization of the soliton wave function allows soliton parameters (amplitude, width, energy,
momentum and effective mass) to be expressed in terms of the exciton number, whose value
appears to be, for the given set of system parameters, the main limiting factor as regards soliton
existence.

Soliton motion has quite different consequences for its properties to those predicted
in [12] within the so-called semicontinuum approximation. Thus, transcribing the results of
reference [12] employing the continuum approximation and utilizing the connection between
the soliton velocity and wave vector of the carrier wave, it follows that both the nonlinear
term and the effective transfer integral decrease as the velocity rises, which means that motion
causes the shrinking of the ‘bright’ soliton, supporting its stability, and violates the stability
of the ‘dark’ soliton, but increases its width.
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Finally, let us mention the interesting recent papers of Konotop and Takeno where a related
problem has been studied, with account taken of discreteness effects [18, 19]. The subject of
these studies was the system of excitons with exchange and dipole–dipole interaction which,
under certain circumstances, could be mapped onto our problem. However, most of their stud-
ies were performed within the discrete (lattice) model. For that reason, it is difficult to establish
a proper correspondence of our results with theirs. However, one can see that they did not at-
tempt to establish a correspondence between the soliton properties and the number of excitons.
Moreover, they did not find the explicit expressions for the energy and momenta of the corre-
sponding solutions, so they were not in a position to derive an energy–momentum relationship.
For this reason, the nature of these nonlinear solutions (and their possible soliton character) still
remains unknown. Of course, we are aware of the problem of defining the momentum in the
discrete treatment without resorting to some continuum (or semicontinuum) approximation.
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